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Abstract—The integration of phasor measurement units
(PMUs) and phasor data concentrators (PDCs) in smart grids
may be exploited by attackers to initiate new and sophisticated
false data injection (FDI) attacks. Existing FDI attack mitigation
approaches are generally less effective against sophisticated FDI
attacks, such as collusive false data injection (CFDI) attacks
launched by compromised PDCs (and PMUs) as we demonstrate
in this paper. Thus, we propose a secure and resilience-enhanced
scheme (SeCDM) to detect and mitigate such cyber threats in
smart grids. Specifically, we design a decentralized homomorphic
computation paradigm along with a hierarchical knowledge
sharing algorithm to facilitate secure ciphertext calculation of
state estimation residuals. Following this, a centralized FDI
detector is implemented to detect FDI attacks. Findings from the
security analysis demonstrate our approach achieves enhanced
conventional FDI and CFDI attack resilience, and findings from
our performance evaluations on the standard IEEE 14-, 24-,
and 39-bus power systems also show that the communication
overheads and computational complexity are reasonably “low”.

Keywords—Smart grids, state estimation, false data injection
(FDI) attacks, collusion attacks, system resilience.

I. INTRODUCTION

There is an expectation that smart grids, benefiting from
the wide-area measurement and control (WAMC) system,
can help achieve accurate, efficient, and reliable bidirectional
power flows (also explained in the IEEE Grid Vision 2050
[1]). However, the expanded interconnectivity of smart grids
also implies a larger attack surface, with more potential for
attacks and exploitations. For example, as shown in Fig. 1,
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TABLE I
SUMMARY OF NOTATIONS

Notation Meaning
z The vector of measurement data in a power system
x The vector of real power system status data
H The measurement Jacobian matrix of a power system
γ The vector of measurement residuals
τ The predefined threshold for bad data detection
Ω The transformed matrix containing the secrets of H

ω0
i The secret matrix shared by PDC Vi
ω1
i The secret matrix shared by the FDI detection module

H0 The null hypothesis that z is valid with no FDI attack
H1 The alternative hypothesis that z is under an FDI attack
z̃ The non-negative integer vector by converting the mea-

surement data vector z

z′ The vector of measurement data with false data injected
E(z̃i) The encrypted measurement data of z

Ai,j The message authentication code (MAC) for zi,j
l The number of PMUs, as well as the number of buses
d The dimension of measurement data z

δ The number of regions in a power grid

the deployment of integrated intelligent equipment/devices,
such as phasor measurement units (PMUs) and phasor data
concentrators (PDCs), is increasingly common in smart grids.
One relatively high profile incident is that involving Stuxnet,
a malware reportedly designed to target Iran’s nuclear power
plant. In this particular example, over 20,000 network termi-
nals were reportedly infected and an estimated number of 984
uranium enriching centrifuges were destroyed [2]. Other more
recent high profile incidents include the distributed denial-of-
service (DDoS) attacks on JEA, a major electric utility located
in Jacksonville, Florida, U.S., in 2013 [3], the BlackEnergy3
& denial-of-service (DoS) attacks on Ukraine’s power grids
in 2015 [4], and the zero-day exploits targeting U.S. power
grids in March 2019 [5]. Such incidents show that smart grids
are much more likely to remain a major target of interest
in the coming future, particularly by those state-sponsored or
affiliated cyber threat actors. The importance of cyber security
in smart grids is also reinforced by a recent report from the
United States Government Accountability Office [6], which
stated that ‘threat actors are becoming increasingly capable
of carrying out attacks on the grid. At the same time, the grid
is becoming more vulnerable to attacks’.

One commonly seen attack targeting smart grids is false data
injection (FDI; also known as data integrity or data deception
attacks in the literature). For example, Liu et al. demonstrated
that the viability of circumventing conventional static state
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Fig. 1. A snapshot of PMU and PDC deployments in North America [7].

estimator and bad data detector, if the attackers are equipped
with the knowledge of grid topology and configurations as
well as a line of measurement data [8]. In such an attack,
adversaries plan to inject fabricated measurement data via
compromised metering devices, in purpose of blinding and
misleading the power gird control center. Consequences of
a successful FDI attack include system disturbance or down-
time, power overloading, power outages, and potentially phys-
ical casualties. Thus, detecting and mitigating FDI attacks is
a topic of ongoing research interest [9]–[18].

One can observe that there have also been attempts to
utilize homomorphic encryption techniques for secure state
estimation and/or FDI attack mitigation in power grids [9]–
[12]. For example, Li et al. in 2018 proposed a PAMA
scheme, where a hybrid Paillier cryptosystem is employed to
allow FDI detection on ciphertexts, as well as minimizing
the risk of information leakage [9]. In 2020, Zhang et al.
[10] designed an encryption-based state estimation scheme
by using both multiplicatively and additively homomorphic
encryption approaches, in order to conceal the model parame-
ters, measurement data, and state estimates. However, these
studies generally assume weak adversarial settings, in the
sense that participants (e.g., PDCs, and data aggregators [19],
[20]) are fully trusted at all times. It is, now, an unrealistic
assumption, because PDCs as well as their communication
channels are suffering from a line of cyberattacks [21]–[24],
particularly given that attackers (e.g., well-resourced attackers
such as state-sponsored or advanced persistent threat (APT)
actors) are capable of launching sophisticated large-scale at-
tacks [25]. While there have been studies focusing on new
categories of strong FDI attacks on smart grids, such as co-
ordinated FDI-physical attacks [13], multiple-bus FDI attacks
[14], and optimal FDI attacks [15], we observe that PDC-
and/or PMU-empowered FDI attacks remain challenging to be
addressed. The importance of securing PDCs and mitigating
PDC-empowered FDI attacks should not be understated, as
PDCs and PMUs are two key components in smart grids. In
other words, compromised PDCs and PMUs can be abused
to facilitate other damaging and sophisticated FDI attacks on

smart grids [17], [18], with potentially fatal consequences.
Motivated by the above observations, we focus on the case

where both PMUs and PDCs are not fully trusted participants,
and they can collude to design new FDI attacks. Such new
attacks are coined “collusive false data injection” (CFDI)
attacks (see the adversarial model outlined in Section III-B),
which can have a significant impact on smart grid operations
resulting in devastating consequences. To defend against CDFI
attacks, in this paper, we propose a Secure CFDI Detection
and Mitigation scheme (SeCDM) for smart grid deployment.
Specifically, we design a decentralized homomorphic compu-
tation paradigm, along with a hierarchical knowledge shar-
ing algorithm, to enable secure calculation of measurement
residuals in the ciphertext domain. Then, a centralized FDI
detection is conducted to identify the existence of FDI attacks
based on these measurement residuals. A summary of our main
contributions is presented below:
• We demonstrate how several existing homomorphic en-

cryption based FDI mitigation schemes (e.g., PAMA [9])
are vulnerable to CFDI attacks, a set of sophisticated FDI
attacks initiated by a coalition of compromised PDCs
(and PMUs). The importance of defending against such
new attacks for smart grids is then discussed.

• We propose a novel secure and resilience-enhanced
scheme (hereafter referred to as SeCDM) to detect and
mitigate not only conventional FDI attacks, but also two
new types of CFDI attacks on smart grids; thus, enabling
smart grids to defend against a broader spectrum of FDI
attacks.

• We design a new decentralized homomorphic compu-
tation paradigm, along with a hierarchical knowledge
sharing algorithm for smart grids, which allows secure
and efficient FDI detection (as demonstrated by our
security analysis and extensive performance evaluations).

The remainder of this paper is organized as follows. In
Section II, we review the state-of-the-art literature in terms
of the FDI detection schemes and secure data transmission
protocols for power grids. Section III presents our system
model and adversarial model. In Section IV, we elaborate
on our proposed SeCDM scheme, followed by the respective
security analysis and performance evaluation in Sections V
and VI. Finally, Section VII concludes this paper.

II. RELATED LITERATURE

In this section, we will review the extant literature on FDI
detection schemes and secure data transmission protocols for
power grids.

A. FDI Detection in Power Grids

Studies focusing on FDI detection schemes for power grids
have been widely reported in the literature, such as those
using statistical and machine learning approaches [26]–[28].
For example, Bretas et al. in 2013 raised an innovation
concept, i.e., the normalized composed measurement error
(CMEN ), in support of identifying bad data with gross
errors in power systems [29]. In the same year, Esmalifalak
et al. proposed two machine-learning-based techniques for
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stealthy attack detection, one of which utilizes support vector
machine (SVM) and the other requires no training data and
detects deviation in measurements [30]. In 2015, Ozay et
al. provided an attack detection framework by leveraging
prior knowledge about the system, and using known batch
and online learning algorithms [31]. However, these schemes
usually incur significant computational overhead, for example
due to the processing of raw measurements in power grids.
Sparsity matrix optimization is another promising approach
for FDI attack detection [32], [33]. For instance, Liu et al.
in 2014 transformed the identification problem of FDI attacks
into a low rank matrix recovery problem and the nuclear norm
minimization problem [32]. Gao et al. in 2016 also proposed
a convex-optimization-based method and theoretically demon-
strated the data identification guarantee. Specifically, findings
from their numerical experiments results suggested that the
proposed approach achieves high detection rate [33].

Another viable approach to FDI attack detection is to
leverage moving target defenses (MTDs). However, existing
MTD-based approaches generally focus on protecting the mea-
surement variables, altering the grid topologies, or altering the
line impedance. This can dynamically change the conditions
that FDI attackers exploit [14], [34]–[36]. For example, in
2018, Tian et al. proposed an enhanced hidden MTD-based
approach to maintain the power flows while ensuring stealth-
iness even when the attackers are capable of checking the
activation of the distributed flexible AC transmission system
(D-FACTS) devices [34]. More recently in 2020, we system-
atically explored the feasibility and limitations of perturbing
D-FACTS devices, an MTD approach, to thwart FDI attacks
on power grid state estimation [14]. In 2021, Higgins et al.
presented an implementation of MTD, combined with physical
watermarking, to facilitate the detection of traditional and
intelligent FDI attacks, while remain hidden to the attackers
and limiting the impact on system operation and stability [35].

B. Secure Data Transmission Protocols in Power Grids

Securing measurement variables, as well as the configu-
ration and topology information of power grids, can be an
effective way to resist FDI attacks, as demonstrated in studies
such as those of [37]–[41]. For example, in 2013 Ruj et al.
proposed a decentralized security framework for smart grids
that supports data aggregation and access control [37]. Lu et
al. also proposed a privacy protection aggregation scheme for
smart grid communication, which can also help the control
center to better monitor and control the smart grid [38]. In
2018, Abdallah et al. [39] proposed a lightweight privacy-
preserving electricity consumption aggregation scheme that
utilizes lightweight lattice-based homomorphic cryptosystem,
and Wen et al. [40] proposed a lightweight number theory
research unit (NTRU)-based scheme to achieve information
privacy issues. In the same year, Guan et al. also proposed
a privacy-preserving and efficient data aggregation scheme
based on blockchain for power grids communications in smart
communities [41]. In addition to these schemes preventing the
measurement data from being stolen and tampered with by
attackers, there have been attempts to utilize homomorphic

encryption techniques for achieving secure state estimation
and/or FDI attack mitigation in power grids. For example, Li et
al. in 2018 proposed a hybrid Paillier based scheme to achieve
FDI detection on ciphertexts, as well as minimizing the risk of
information leakage [9]. Most recently in 2020, Zhang et al.
designed an encryption-based state estimation scheme by using
both multiplicatively and additively homomorphic encryption
approaches, to conceal the model parameters, measurement
data, and state estimates [18]. In this work, we aim to provide
a privacy-preserving FDI detection and mitigation scheme,
especially for those PDC-based sophisticated CFDI attacks.

III. SYSTEM AND ADVERSARIAL MODELS

In this section, we introduce the system model and formu-
late the types of FDI attacks that will be addressed in this
work. The nomenclature is presented in Table I.

A. System Model

The system model considers the wide-area measurement and
control (WAMC) system accompanied by an FDI detection
module in smart grids, which allows time-synchronized phasor
data collection in real-time and consequently facilitates wide-
area monitoring, FDI detection, and control of smart grids.

1) Overview: Our system model (see Fig. 2) mainly com-
prises four entity types, namely: a control center, an FDI
detection module, a set of PDCs V = {V1, V2, · · · , Vδ}, and
a line of PMUs U = {U1, U2, · · · , Ul}. Given that a smart
grid is partitioned into δ regions R = {R1, R2, · · · , Rδ} in
terms of their physical distributions, each region Rk ∈ R, k ∈
K = {1, 2, · · · , δ} has one PDC Vk and lk PMUs. The total
numbers of PMUs and PDCs in a smart grid are respectively
denoted by l =

∑
k∈K lk and δ.

• PMUs U = {U1, · · · , Ul}: Each PMU Ui ∈ U and its
neighboring line meters jointly establish a PMU-centered
measurement cluster. The PMU is responsible for mea-
suring the current phasors and voltage phasors in real-
time [42], as well as aligning the power flows and power
injections measured by line meters. Then, all required
measurement data, forming into a d-dimensional mea-
surement vector (d is fixed for all PMUs), are periodically
delivered to the regional PDC where PMU Ui is located.

• PDCs V = {V1, · · · , Vδ}: Upon receiving the measure-
ment data reported by all lk PMUs in region Rk, each
PDC Vk ∈ V preprocesses these data (with reference to
Section IV-B3), aggregates the processed data [43], and
then relays them to the FDI detection module. Note that
Vk(Ui) denotes the PDC Vk located at the same region
Rk with PMU Ui.

• FDI Detection Module: The module, located at the same
premise as the control center, serves as a bad data
detector responsible for FDI detection on ciphertexts. The
detection results are then advised to the control center.

• Control center: The results from the FDI detection mod-
ule will be utilized in the decision-makings, e.g., for de-
termining what corresponding feedback operations are to
be further performed to maintain normal grid operations.
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Fig. 2. The considered system model.

2) Hybrid State Estimation and Bad Data Detection: The
focus of this work is on secure detection and mitigation of
CFDI attacks based on a hybrid state estimation [44]–[47],
which leverages measurement data (e.g., voltage magnitudes,
power injections, power flows, and synchro phasors) from both
PMUs, remote terminal units (RTUs), and line meters. In this
work, we consider a DC power flow model for the hybrid state
estimation, as the hybrid state estimation can be formulated
to a linear problem [45], [46] and allows much faster and
simpler calculations than AC based state estimation almost
without sacrificing the accuracy of analysis [34], [48]. The
state estimation algorithm, under the DC power flow model,
is described by the following linear measurement model [46]:

z = Hx + e, (1)

where z ∈ Rld×1 is the measurement data vector including
power flows and power injection measurements, x ∈ Rl×1

is the system state vector, and e ∈ Rld×1 is the measurement
noise vector with zero means [8], [49]. Importantly, H ∈ Rld×l
is the measurement Jacobian matrix, also the measurement
function, containing the power grid topology and configuration
information (see [44], [46] for more details). This problem can
be resolved by a non-iterative procedure, which is given by

x̂ = (HᵀW−1H)
−1

HᵀW−1z, (2)

where W = diag(σ2
1 , σ

2
2 , · · · , σ2

ld) ∈ Rld×ld denotes the
covariance matrix. Note that σ2

i is the non-zero noise variance
for the i-th dimension of measurement data.

To perform classical bad data detection, the weighted mea-
surement residuals are demanded [50]. With x̂ in hand, the
estimated measurement data ẑ is computed by ẑ = Hx̂. Then,
the weighted measurement residual vector γ ∈ Rld×1 is given
by the weighted difference between the collected measurement
data z and the estimated measurement data ẑ, i.e.,

γ =
√

W−1(z− ẑ) =
√

W−1(z−Hx̂). (3)

In the last step, two hypotheses are considered [8], namely:
• H0 is the null hypothesis, where the measurement data

is valid with no FDI attack or bad data.

• H1 is the alternative hypothesis, where the measurement
data is under FDI attacks or contains bad data.

Since the main focus of this work is on secure detection and
mitigation of FDI attacks, differentiating whether FDI attacks
or bad measurement data trigger H1 is not considered (see also
[35], [36], [51]), as this has been the focus in other works such
as those presented in [29], [52], [53].

The hypothesis test (decision rule) can then be made by the
following equation:

‖γ‖2
H1

≷
H0

τ, (4)

where ‖γ‖2 =
√∑

ζ∈M γ2
ζ is the Euclidean norm of γ,M =

{1, 2, · · · , ld}, and τ is a predefined threshold. Since ‖γ‖2
follows a chi-square distribution, τ can then be determined
for the hypothesis test with a given significance level (see [8]
for more details).

B. Adversary Model
In this paper, we assume that both the control center and

the FDI detection module are fully trusted parties, and the
PMUs and PDCs can be compromised by powerful attackers.
This allows us to take conventional FDI attacks, PDC-PMU
collusive FDI (DM-CFDI), and PDC-PDC collusive FDI (DD-
CFDI) attacks on smart grids into consideration.

1) Conventional FDI Attacks: Conventional FDI attackers
compromise the static DC state estimation by falsifying the
normal measurement data in an attempt to blind the bad data
detection. Holding the knowledge of the H matrix, attackers
are able to forge an attack vector a ∈ Rd×1 by (see also [8]):
a = Hc, where c ∈ Rl×1 is an arbitrary vector designed by
the attackers, denoting the expected biases of the estimated
power grid states which FDI attackers wish to cause. Upon
having the capability of manipulating the measurement data,
the attackers can forge a measurement data vector using the
following equation: z′ = z + a. When z′ is reported to the
control center, the estimated system state vector x̂, referring
to Eq. (2), can now be given by:

x̂′ = x̂ + c. (5)

The Euclidean norm of the weighted measurement residual
vector γ′ with injected false data is then given by:

‖γ′‖2 =‖
√

W−1(z′ −Hx̂′)‖2 =‖
√

W−1(z−Hx̂)‖2 ≤ τ.
(6)

In this case, it is obvious that no anomaly can be detected;
hence, a successful FDI attack has been carried out.

2) DM-CFDI Attacks: If FDI attackers are capable of
manipulating both the PDC and at least two PMUs in a same
region, the compromised PDC and PMUs can then collude to
form a coalition. Note that by saying “compromise a device”,
we mean that the attackers are capable of obtaining the secret
knowledge that the device holds and also intercepting with the
communication sessions with other parties. It is possible for
the coalition to orchestrate a set of falsified measurement data
{z′i|i ∈ Lck} that satisfies the following:

γ′ =
∑
i∈Lck

ωiz
′
i =

∑
i∈Lck

ωizi. (7)
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In the above equation, Lck denotes the index set of the
compromised PMUs in region k, and {ωi ∈ Rld×d|i ∈ Lck} is
the shared knowledge to the PDC used to calculate the partial
measurement residuals on ciphertexts (see also Section IV-A).
In this context, the orchestrated data will not be detected and
consequently results in a successful DM-CFDI attack.

3) DD-CFDI Attacks: If the adversaries are sufficiently
powerful to manipulate at least two PDCs, these compromised
PDCs can collude to form a coalition, as discussed earlier.
Such a coalition can potentially access the measurement data
reported by PMUs from various regions and manipulate these
data to facilitate wider-range or more powerful FDI attacks,
as well as circumventing bad data detector more easily. The
technical details will be shown in Section V-D.

In this paper, we do not consider the case where multiple
PMUs are compromised to construct coordinated FDI attacks,
because these problems have been widely investigated in the
existing literature (e.g., [14], [54]).

IV. THE PROPOSED SECDM SCHEME

In this section, we elaborate our proposed SeCDM scheme
and underpinning rationale.

A. Designing Rationale

1) Critical Information Hiding: To prevent the leakage of
the H matrix, we design a two-layer protection mechanism.
The first layer is to hide the H matrix in another transformed
matrix. If we rewrite Eq. (3) by

γ =
√

W−1(z−Hx̂)

=
√

W−1[I−H(HᵀW−1H)−1HᵀW−1]z , Ωz,
(8)

where Ω is defined by

Ω = W−1[I−H(HᵀW−1H)−1HᵀW−1] ∈ Rld×ld, (9)

we observe that matrix Ω is a useful alternative for H. It can
be used to calculate the weighted measurement residual vector
γ and to further support bad data detection. In this way, only
the knowledge of Ω, instead of H, needs to be stored in the
control center’s database. Therefore, H matrix is protected.

2) Hierarchical Knowledge Sharing: To effectively reduce
the computational costs of the control center, we decompose
the computing task for bad data detection into various sub-
tasks that are undertaken by PDCs as well as the FDI detection
module. Prior to that, a key step is to share the sub-task un-
dertakers with significant secrets used to perform the required
computation (see Algorithm 1). As shown in Eqs. (10) and
(11), both matrices Ω and z can be separated into several
submatrices, wherein ωi ∈ Rld×d and zi ∈ R1×d, ∀i ∈ L =
{1, 2, · · · , l}, are respectively given by

ωi=


ω1,(i−1)d+1 · · · ω1,(i+1)d

ω2,(i−1)d+1 · · · ω2,(i+1)d

...
. . .

...
ωld,(i−1)d+1 · · · ωld,(i+1)d

, zi=


zi,1
zi,2
· · ·
zi,d

(12)

Then, with reference to Eq. (8), γ can be rewritten as

γ = Ωz =
∑
i∈L

ωizi = ω1z1 + ω2z2 + · · ·+ ωlzl. (13)

Algorithm 1 Hierarchical knowledge sharing
1: procedure
2: The control center performs the following steps:
3: 1). Computes Ω as per Eq. (9);
4: 2). Partitions Ω = (ω1,ω2, · · · ,ωl) as per Eq. (10);
5: 3). Partitions ωi = ω0

i +ω1
i , ∀i ∈ L, as per Eq. (14);

6: 4). Distributes {ω0
i |i ∈ Lk} to PDC Vk, k ∈ K,

respectively; and
7: 5). Distributes {ω1

i |i ∈ L} to the FDI detection
module.

8: end procedure

As we observe, the task for calculating γ can be completed
by several sub-tasks. It is then natural to distribute these sub-
tasks to PDCs. Since PDCs are not fully trusted participants,
only partial tasks should be outsourced to them in order to
avoid collusion attacks initiated by compromised PDCs and/or
PMUs. In this case, our second layer protection for the H
matrix is to distribute the knowledge of Ω matrix to various
parities including a trusted party. This can effectively prevent
the attackers from obtaining the full knowledge of H matrix.
Specifically, we divide ωi, ∀i ∈ L, into

ω1 = ω0
1 + ω1

1

ω2 = ω0
2 + ω1

2

· · ·
ωl = ω0

l + ω1
l ,

(14)

where each entry ω0
i,j of ω0

i is randomly selected and then
each entry ω1

i,j of ω1
i is calculated by ω1

i,j = ωi,j − ω0
i,j ,

∀i, j ∈M. Then, the total task for calculating γ is given by

γ =
∑
i∈L

ω0
i zi +

∑
i∈L

ω1
i zi. (15)

In this case, it is expected that
• PDCs: each PDC Vk(Ui) computes

∑
i∈Lk ω

0
i zi, where

Lk ⊆ L is the set of PMUs’ indices in region Rk. Then,
all the results are reported to the FDI detection module.

• FDI Detection Module: the module first computes one
half part of measurement residuals by aggregating the
received data from all PDCs, which is given by

γ0 =
∑
k∈K

∑
i∈Lk

ω0
i zi. (16)

Then, with
{
ω1
i | i ∈ L

}
and

{
z1
i | i ∈ L

}
in hand, the

module computes the other half part of measurement
residuals by

γ1 =
∑
i∈L

ω1
i zi. (17)

At last, the total measurement residuals can be calculated
by γ = γ0 + γ1.

B. Concrete Scheme Description
The proposed SeCDM scheme consists of the following five

phases: the System Initialization, Measurement Data Encryp-
tion by PMUs, Encrypted Measurement Data Preprocessing by
PDCs, Measurement Residuals Calculation by the Module, and
Secure FDI Detection by the Module – see also Algorithm 2.
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Ω =


ω1,1 ω1,2 · · · ω1,d ω1,d+1 · · · ω1,2d · · · ω1,(l−1)d+1 · · · ω1,ld

ω2,1 ω2,2 · · · ω2,d ω2,d+1 · · · ω2,2d · · · ω2,(l−1)d+1 · · · ω2,ld

...
...

. . .
...

...
. . .

... · · ·
...

. . .
...

ωld,1 ωld,2 · · · ωld,d ωld,d+1 · · · ωld,2d · · · ωld,(l−1)d+1 · · · ωld,ld

 = (ω1,ω2, · · · ,ωl) (10)

z = (z1,1 z1,2 · · · z1,d z2,1 z2,2 · · · z2,d · · · zl,1 zl,2 · · · zl,d)
ᵀ = (z1, z2, · · · , zl)ᵀ (11)

Algorithm 2 Decentralized homomorphic computation
1: procedure
2: Phase-1: System initialization;
3: Phase-2: Each PMU computes the ciphertexts of

measurement data using the homomorphic hybrid Paillier
cryptosystem – see Eq. (20);

4: Phase-3: Each PDC preprocesses the encrypted mea-
surement data reported by PMUs in its own region using
secrets {ω0

i |i ∈ Lk} – see Eqs. (24) and (25);
5: Phase-4: 1). The FDI detection module preprocesses

the encrypted measurement data delivered by all the PDCs
using secrets {ω1

i |i ∈ L} – see Eqs. (26) and (27);
6: 2). The FDI detection module aggregates all

the preprocessed encrypted measurement data, including
those reported by PDCs, with reference to Eq. (28), and
calculates the ciphertexts of the measurement residuals –
see Eq. (29);

7: Phase-5: The module decrypts the measurement resid-
uals and checks the hypothesis test– see Eqs. (30) to (33);

8: end procedure

1) System Initialization: It is reasonable, for a single-
authority smart grid, to assume that the trusted control center
can bootstrap the entire system. This work exploits the hybrid
Paillier cryptosystem [9], which allows faster homomorphic
computation and more flexible message decryption methods
than many existing homomorphic encryption methods (e.g.,
BGV [55], BFV [56], FHEW [57], etc.).

In this phase, given a security parameter κ ∈ Z+, the
control center generate the public key PK = (n, g) and
the corresponding private key SK = (λ, µ). Specifically,
g = n + 1, µ = (L(gλ mod n2))−1 mod n, and function
L is defined as L(α) = (α − 1)/n. Select a hash function
H : {0, 1} → Zn, and publish both PK and H . Then, the
control center distributes the relevant key materials to each
PMU Ui ∈ U , each PDC Vk ∈ V , as well as the FDI detection
module, which is described as follows:
• Step-1: Let α̃ = f(α) = 1000 · α mod n and apply it

over Ω, such that each element ωi,j ∈ Ω, ∀i, j ∈ M,
can be converted into a positive integer ω̃i,j ∈ Ω̃ in
Zn. Note that each ωi,j is set as a real number in
either zero, positive or negative decimal (having up to
three decimal places). Then, partition matrix Ω into
submatrices {ω̃1, ω̃2, · · · , ω̃l} according to Eq. (10). For
each submatrix ω̃i with i ∈ L, further partition it by
ω̃i = ω̃0

i + ω̃1
i , where each element ω̃0

i,j in ω̃0
i with

j ∈ M is a random number in Zn and each element
ω̃1
i,j = ω̃i,j−ω̃0

i,j mod n in ω̃1
i with i, j ∈M. Distribute

each ω̃0
i to its corresponding PDC Vk(Ui) for i ∈ Lk and

k ∈ {1, 2, · · · , δ}, respectively.
• Step-2: Let s = {si,j ∈ Z∗n|i ∈ L, j ∈ D} denote a set of

secret keys, where si,j ∈ s is randomly selected. Then,
distribute si = {si,1, · · · , si,d} ⊆ s to each PMU Ui.

• Step-3: Finally, compute ld conjunctive secret keys:

skζ = n ·
∑
i∈L

∑
j∈D

ω̃ζ,(i−1)d+j · si,j mod n2, (18)

for all ζ ∈ M, prior to distributing these ld secret keys
(sk1, sk2, · · · , skld) to the FDI detection module.

2) Measurement Data Encryption by PMUs: At each
epoch time t, PMU Ui ∈ U collects d-dimensional power
grid status measurement data zi = (zi,1, zi,2, · · · , zi,d)ᵀ
in either zeros, positive or negative decimals (having up
to three decimal places). Next, PMU Ui computes each
Υi,j = n · si,j mod n2, ∀j ∈ D, in an offline mode, and
performs the following online steps:
• Step-1: Compute z̃i = f(zi) to guarantee that each

element in z̃i is a non-negative integer in Zn, i.e.,

z̃i = f(zi) = 1000× zi

= (z̃i,1, z̃i,2, · · · , z̃i,d)ᵀ mod n.
(19)

• Step-2: Encrypt each dimensional data of z̃i, ∀j ∈ D,
using the secret keys si = {si,1, si,2, · · · , si,d}, by

E(z̃i,j)=Enc(PK, z̃i,j , si,j)
=gz̃i,j ·H(t)n·si,j mod n2.

(20)

Given g = n+1, this equation is equivalent to calculating

E(z̃i,j) = (n+ 1)z̃i,j ·H(t)Υi,j mod n2

= (n · z̃i,j + 1) ·H(t)Υi,j mod n2,
(21)

which significantly reduces the computational task by
transforming exponential computations to multiplications.
All the encrypted measurement data for PMU Ui are
denoted by a vector E(z̃i), which is given below:

E(z̃i) =


(n · z̃i,1 + 1) ·H(t)Υi,1 mod n2

(n · z̃i,2 + 1) ·H(t)Υi,2 mod n2

...
(n · z̃i,d + 1) ·H(t)Υi,d mod n2

 . (22)

• Step-3: Using the standard Key-Hashed Message Au-
thentication Code (HMAC) algorithm [58], PMU Ui
calculates a message authentication code (MAC) for each
piece of measurement data using the recommended SHA-
256 hash function, i.e.,

Ai,j = HMACSHA256(si,j , z̃i,j , t). (23)
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Then, E(z̃i) along with the MACs Ai,j =
(Ai,1, Ai,2, · · · , Ai,d) and the timestamp t are reported
to PDC Vk(Ui).

3) Encrypted Measurement Data Preprocessing by PDCs:
In each region, PDC Vk conducts the following three subtasks:
• Step-1: For each E(z̃i,j) reported by PMU Ui in region
Rk, PDC Vk computes each Z̃0

i,ζ (ζ ∈ M) using ω̃0
i ,

which is given by the following equation:

Z̃0
i,ζ =

∏
j∈D

E(z̃i,j)
ω̃0
ζ,(i−1)d+j mod n2

(24)

• Step-2: For all PMUs Ui, i ∈ Lk, Z̃0
i,ζ can be further

aggregated using the following equation:

C̃0
k,ζ =

∏
i∈Lk

Z̃0
i,ζ = g

∑
i∈Lk

∑
j∈D ω̃

0
ζ,(i−1)d+j ·z̃i,j×

H(t)
∑
i∈Lk

∑
j∈D ω̃

0
ζ,(i−1)d+j ·Υi,j mod n2.

(25)

• Step-3: Report the aggregated preprocessed measurement
data C̃0

k = (C̃0
k,1, C̃

0
k,2, · · · , C̃0

k,ld)
ᵀ, the encrypted mea-

surement data E(z̃i), and their MACs Ai,j , i ∈ Lk, along
with t to the module.

4) Measurement Residuals Calculation by the Module:
With the knowledge of ω̃1

1 , ω̃
1
2 , · · · , ω̃1

l and the received
encrypted measurement data E(z̃1), E(z̃2), · · · , E(z̃l), the
FDI detection module performs the following four subtasks:
• Step-1: For each piece of encrypted measurements
E(z̃i,j), i ∈ L, the module preprocesses it with ω̃1

i by
computing each Z̃1

i,ζ , where ζ ∈M, as

Z̃1
i,ζ =

∏
j∈D

E(z̃i,j)
ω̃1
ζ,(i−1)d+j mod n2. (26)

• Step-2: All Z̃1
i,ζ , i ∈ L, ζ ∈M, can jointly form into

Γ̃1
ζ =

∏
i∈L

Z̃1
i,ζ = g

∑
i∈L

∑
j∈D ω̃

1
ζ,(i−1)d+j ·z̃i,j×

H(t)
∑
i∈L

∑
j∈D ω̃

1
ζ,(i−1)d+j ·Υi,j mod n2,

(27)

the half part of the encrypted measurement residuals.
• Step-3: Similarly, having C̃0

k collected from each region
Rk (k ∈ K), calculate Γ̃0

ζ for ζ ∈M, the remaining half
part of the encrypted measurement residuals by

Γ̃0
ζ =

δ∏
k=1

C̃0
k,ζ = g

∑
i∈L

∑
j∈D ω̃

0
ζ,(i−1)d+j ·z̃i,j×

H(t)
∑
i∈L

∑
j∈D ω̃

0
ζ,(i−1)d+j ·Υi,j mod n2.

(28)

• Step-4: Then, calculate each dimension of the encrypted
measurement residuals Γ̃ζ using the following equation:

Γ̃ζ = Γ̃0
ζ × Γ̃1

ζ

= g
∑
i∈L

∑
j∈D ω̃ζ,(i−1)d+j ·z̃i,j×

H(t)
∑
i∈L

∑
j∈D ω̃ζ,(i−1)d+j ·Υi,j mod n2

=
(
n ·
∑
i∈L

∑
j∈D

ω̃ζ,(i−1)d+j · z̃i,j + 1
)
×

H(t)
∑
i∈L

∑
j∈D ω̃ζ,(i−1)d+j ·Υi,j mod n2.

(29)

5) Secure FDI Detection by the Module: The module per-
forms the following steps to achieve secure FDI detection.
• Step-1: With the hash function H , timestamp t, and secret

keys (sk1, sk2, · · · , skld) in hand, compute H(t)skζ mod
n2, ∀ζ ∈M. Next, each Γ̃ζ is decrypted:

γ̃ζ = Dec-II(skζ , Γ̃ζ , t)

= L(
Γ̃ζ

H(t)skζ
mod n2)

=
∑
i∈L

∑
j∈D

ω̃ζ,(i−1)d+j · z̃i,j mod n.

(30)

The decrypted γ̃ = (γ̃1, γ̃2, · · · , γ̃ld)ᵀ is the plaintext
vector of weighted measurement residuals in Zn. Con-
sidering that weighted measurement residuals can either
be zero, positive, or negative, we recover the weighted
measurement residuals to the original scale by{

γζ = f−1(γ̃ζ), if γ̃ζ < n
2

γζ = f−1(γ̃ζ − n), otherwise.
(31)

• Step-2: Compute the summed squares of γζ modulo n,
for ζ ∈M, by

φ =
∑
ζ∈M

γ2
ζ mod n. (32)

• Step-3: As per Eq. (4), check the hypothesis test by

φ
H0

≷
H1

τ2. (33)

• Step-4: If no FDI attack or bad data is detected, the
encrypted measurement data E(z̃i) along with the MACs
Ai,j = (Ai,1, Ai,2, · · · , Ai,d) will be sent to the control
center. The control center will verify the value of MACs.

V. SECURITY ANALYSIS AND PROOF

In this section, the vulnerability of existing homomorphic
encryption based FDI mitigation schemes, taking the PAMA
scheme as an example, to CFDI attacks is demonstrated, and
the security of our proposed SeCDM scheme is analyzed.
Specifically, we will show that SeCDM can effectively mit-
igate FDI attacks by preserving both the measurement data
vector z and the Jacobian matrix H. More importantly, the
SeCDM scheme can also achieve enhanced resilience against
DM-CFDI and DD-CFDI attacks.

A. Preservation of Vector z

In the proposed scheme, the secrecy of vector z is preserved
mainly on the communication links by using the secure hybrid
Paillier cryptosystem. The vector zi for any i ∈ L is encrypted
at each PMU side, before being transmitted to the PDC,
the module, and all the way to the control center. In this
case, any eavesdropper along the communication links, such
as PMU-to-PDC link and PDC-to-the-module link, cannot
recover the plaintexts of vector z without the secret keys
si,j ∈ s or the private key SK. Note that, if PMUs serving
as the measurement data generators are compromised, it is
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nearly impossible to prevent them from leaking the original
measurement data. Also, since PMUs are equipped with the
secret keys si,j ∈ s, if they are compromised and collude with
the PDC, the coalition formed by these PMUs and the PDC are
endowed with the capability of decrypting the measurement
data; therefore, they can also cause data leakage. As we can
see, the original measurement data z is well preserved along
the entire communication links in our scheme, although no
one can guarantee that PMUs may not commit data leakages.

B. Preservation of Matrix H

In the proposed SeCDM scheme, we provide two layers
of protection for the H matrix. In the first layer, rather than
delivering the real H matrix to the FDI detection module for
bad data detection, the control center first computes an Ω
matrix with reference to Eq. (9), where H is encapsulated,
and distributes its partitions to the FDI detection module and
the PDCs, respectively, as introduced in Section IV-B. In
such a way, the knowledge of H matrix is hidden from all
the entities except for the control center. In the second layer
protection, each PDC Vk is only armed with the knowledge of
{ω0

i |i ∈ Lk} (see Section IV-B). Even if the adversaries are
capable of compromising all PDCs (also a strong assumption),
they only have access to half the knowledge of Ω, i.e.,
{ω0

i |i ∈ L}. Since the FDI detection module is fully trusted,
the adversary is not able to access {ω1

i |i ∈ L}, construct Ω, or
recover H. Therefore, in our proposed SeCDM scheme, matrix
H that contains the knowledge of power grid topology and
configurations is well protected against unauthorized access.

While it may be claimed that partial knowledge of H matrix
can possibly be determined if attackers can get access to suffi-
cient number of plaintexts for a power system historical mea-
surement data. However, this is a strong assumption and gen-
erally implies an advanced persistent attacker with dedicated
and significant resources (e.g., nation state). Moreover, the H
matrix (containing the information of system topology and
configurations) adapts from time to time in the highly complex,
dynamic, and geographically-dispersed power system, particu-
larly given that distributed flexible AC transmission system (D-
FACTS) or FACTS devices are increasingly deployed over the
smart grids [14]. Furthermore, in the proposed scheme, all the
measurement data are protected by our proposed decentralized
homomorphic computation algorithm (see Algorithm 2). It is,
therefore, hard for attackers to eavesdrop on or intercept the
communication links for harvesting the measurement data.

C. Resilience Against DM-CFDI Attacks

As introduced in Section III-B, if the PDC and at least
two PMUs in the same region collude, say in PAMA [9], the
coalition can design a DM-CFDI attack. In this case, with
reference to Eqs. (4) and (13), we have

‖γ′‖2 = ‖
∑
i∈Lck

ωiz
′
i +

∑
i∈L/Lck

ωizi‖2 = ‖Ωz‖ < τ. (34)

As we see, no bad data can be detected by using the given
bad data detector. However, in our proposed scheme, PDCs
hold less knowledge for help calculating the measurement
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Fig. 3. Five test cases to demonstrate the security of the proposed scheme.

residuals; even though they collude with PMUs, no effective
DM-CFDI attacks can be successfully constructed. We sum-
marized our finding in Theorem 1.

Theorem 1. The proposed scheme can achieve effective re-
silience of DM-CFDI attacks.

Proof. Given that in a region k, the PDC and PMUs indexed
by Lck are compromised by FDI attackers, the PDC is equipped
with the knowledge of ω0

i , i ∈ Lk, and PMUs can access
the plaintexts of measurement data zi, i ∈ Lck. The coalition
formed by this PDC and PMUs can only construct∑

i∈Lck

ω0
i z
′
i =

∑
i∈Lck

ω0
i zi. (35)

Since ω1
i , i ∈ Lck are owned by the FDI detection module,

they cannot falsify a set of measurement data {z′i|i ∈ Lck}
that satisfies∑

i∈Lck

ω0
i z
′
i +

∑
i∈Lck

ω1
i z
′
i =

∑
i∈Lck

ω0
i zi +

∑
i∈Lck

ω1
i zi. (36)

Following this, it is by no means for FDI attackers to achieve

‖γ‖2 =‖
∑
i∈Lck

(ω0
i + ω1

i )z′i+
∑

i∈L/Lck

(ω0
i + ω1

i )zi‖2 =‖Ωz‖2.

(37)

Although it is possible that attackers can inject any false
data that leads to ‖γ‖2 6= ‖Ωz‖2 < τ in this case, such false
data are regarded as measurement noises, which is proved to
be trivial and can be surely tolerated for the state estimation
[8], [14], [49]. Hence, ‖γ‖2 6= ‖Ωz‖2 > τ holds all the time,
as long as attackers aim to launch an effective FDI attack
(see [14] for more detailed discussions on the effective FDI
attacks). The hypothesis H0 is therefore false, and DM-CFDI
attacks cannot be a success by using our proposed scheme.

D. Resilience Against DD-CFDI Attacks

In PAMA, if compromised PDCs in different regions (hav-
ing the knowledge of ωi and E(zi), i ∈ Lk, k ∈ Kc) collude
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together, this coalition is able to design
Z̃′i,ζ =

∏
j

(
E(z̃i,j)

ω̃ζ,(i−1)d+j · gri,j
)
mod n2,

0 =
∑
i,j ri,j mod n,

k ∈ Kc, i ∈ Lk, j ∈ D, ζ ∈M,

(38)

where Z̃ ′i,ζ is the desired falsified data, Kc denotes the indices
set of compromised PDCs, and ri,j ∈ Z∗n is a random positive
integer less than n. In this case, with reference to Eqs. (4) and
(13), when DD-CFDI attacks are launched, we have

‖γ‖2 =
∥∥∥ ∑
i∈Lk,k∈Kc

ωizi+

∑i∈Lk,j∈D
ri,j mod n
· · ·∑

i∈Lk,j∈D
ri,j mod n


ld×1

+
∑

i∈Lk,k∈K/Kc
ωizi

∥∥∥
2

= ‖
∑

i∈Lk,k∈Kc
ωizi + 0 +

∑
i∈Lk,k∈K/Kc

ωizi‖2

= ‖Ωz‖2 < τ,

(39)

where k ∈ Kc and 0 is an ld × 1 column vector with its all
entries equalling 0. In this case, no bad data can be detected
by using the given bad data detector.

Nevertheless, in our proposed scheme, each PDC holds
relatively less knowledge for help calculating the measurement
residuals (partial knowledge of ωi, i ∈ Lk) and MACs are
exploited to verify the integrity of the encrypted measurement
data. In this way, even though PDCs collude together, no
effective DD-CFDI attacks can be successfully constructed.
We summarized this finding in Theorem 2.

Theorem 2. The proposed scheme can achieve effective re-
silience of DD-CFDI attacks.

Proof. Given that a line of PDCs Vk, k ∈ Kc, in a power grid
are compromised by FDI attackers, they know ω0

i , i ∈ L and
can access the ciphertexts of measurement data E(zi), i ∈ L
delivered by all the PMUs. The coalition formed by these
compromised PDCs may design

E′(z̃i,j) = E(z̃i,j) · gri,j mod n2

Z̃′,0i,ζ =
∏
j∈D

(
E(z̃i,j)

ω̃0
ζ,(i−1)d+j · gri,j

)
mod n2

0 =
∑
i,j ri,j mod n

k ∈ Kc, i ∈ Lk, j ∈ D, ζ ∈M,

(40)

which can lead to∏
i∈Lk,k∈Kc

Z̃′,0i,ζ

=
∏

i∈Lk,k∈Kc

∏
j∈D

(
E(z̃i,j)

ω̃0
ζ,(i−1)d+j · gri,j

)
mod n2

= g
∑
i∈Lk,k∈Kc

∑
j∈D ω̃

0
ζ,(i−1)d+j ·z̃i,j×

H(t)
∑
i∈Lk,k∈Kc

∑
j∈D ω̃

0
ζ,(i−1)d+j ·Υi,j mod n2.

(41)

at the FDI detection module. It is equivalent to constructing∑
i∈Lk,k∈Kc

ω0
i z
′
i =

∑
i∈Lk,k∈Kc

ω0
i zi (42)

in plaintexts. If E(zi), i ∈ Lk, k ∈ Kc, are reported to the
module without falsifications, the coalition can cause

‖γ‖2 =
∥∥∥ ∑
i∈Lk,k∈Kc

ω0
i z
′
i+

∑
i∈Lk,k∈K\Kc

ω0
i zi+

∑
i∈L

ω1
i zi

∥∥∥
2

=
∥∥∥∑
i∈L

(ω0
i + ω

1
i )zi

∥∥∥
2

= ‖Ωz‖2 < τ,

(43)

which will trigger hypothesis H0 (no false data can be
detected) in this case. It is seemingly a fancy result. How-
ever, it is meaningless if only falsifying Z̃0

i,ζ by the desired
Z̃ ′,0i,ζ , but not the E(zi), i ∈ Lk, k ∈ Kc, concurrently. The
reason is that, if E(zi), i ∈ Lk, k ∈ Kc, are replaced by
E′(z̃i,j) = E(z̃i,j) · gri,j mod n2, i ∈ Lk, k ∈ Kc, j ∈ D,
MAC validation will certainly be failed at the control center.
Hence, we can see that no DD-CFDI attack can be a success
by implementing our proposed SeCDM scheme.

VI. PERFORMANCE EVALUATION

In this section, we will explain our evaluation setup and
the findings of the evaluations, in terms of the effectiveness
of SeCDM in detecting both conventional FDI and CFDI
attacks, the computational complexity of the PMU, PDC, and
FDI detection module, and the communication overheads of
PMU-to-PDC and PDC-to-Module communication links. The
simulations are carried out on an Intel(R) Core(TM) i7-9700
CPU @3.00GHz with 8GB RAM Windows platform in Java,
and the key parameter settings are summarized in Table II.

TABLE II
PARAMETER SETTINGS

Parameter Setting
κ, |p|, |q| 512

|n| 1024

Hash function for H(t) SHA-256
Simulation rounds 1000

Test bus systems IEEE 14-, 24-, and 39-bus systems

A. Effectiveness in Detecting FDI Attacks

In this part, we conduct three groups of simulation experi-
ments using the PowerWorld1 simulator on the standard IEEE
14-bus test power system2, for verifying the effectiveness of
the proposed SeCDM scheme in detecting conventional FDI,
DM-CFDI, and DD-CFDI attacks, respectively.

In the first group, we simulate a conventional FDI attack
targeting Bus 2 (where 1MW is added to the measurement
data of Load 2 as the falsified measurement data) and a
conventional FDI attack targeting Bus 6 (where −1MW is
added to the measurement data of Load 6 as the falsified mea-
surement data). As Figs. 4 and 5 show, the estimated power
system states, i.e., the bus voltage angles, suffer significant
disturbances if no proper defense is in place. Importantly,

1PowerWorld (https://www.powerworld.com/)
2ICSEG Power Cases (https://icseg.iti.illinois.edu/power-cases/)
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Fig. 4. The voltage angle values when a con-
ventional FDI attack is launched at Bus 2.
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Fig. 5. The voltage angle values when a con-
ventional FDI attack is launched at Bus 6.
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Fig. 6. The voltage angle values of Bus 2’s
neighboring buses, when a DM-CFDI attack is
launched at Buses 2 and 6.
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Fig. 7. The voltage angle values of Bus 6’s
neighboring buses, when a DM-CFDI attack is
launched at Buses 2 and 6.
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Fig. 8. The voltage angle values of Bus 5’s
neighboring buses, when a DD-CFDI attack is
launched at Buses 4, 5, 6, and 9.
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Fig. 9. The voltage angle values of Bus 9’s
neighboring buses, when a DD-CFDI attack is
launched at Buses 4, 5, 6, and 9.

both SeCDM and the PAMA scheme can identify conventional
FDI attacks. Note that, in Figs. 4 to 9, only 10 seconds of
bus voltage angle values are presented, in purpose of simply
showing the variation trends after an FDI attack.

In the second group, we show an example of DM-CFDI
attack launched by compromised PMUs located at Buses 2,
5, 6, and 12, and collusively by the compromised PDC in
this region. Figures 6 and 7 describe the estimated voltage
angle values of buses neighboring Buses 2 and 6, respectively,
after the DM-CFDI attack is launched. As observed from the
figures, the power system suffers significant disturbances if no
proper defense against DM-CFDI attacks is in place. We also
observe that the PAMA scheme fails to identify the DM-CFDI
attack, unlike our proposed SeCDM scheme.

Likewise, in the third group, we show an example of
DD-CFDI attack launched by two compromised PDCs in
different regions, each of which resides with compromised
PMUs at Buses 2, 5, 6, and 12, as well as those at Buses
3, 4, 7, and 9, respectively. In Figs. 8 and 9, we show the
estimated voltage angle values of buses neighboring Buses 5
and 9, respectively, after a DD-CFDI attack. Similarly, the
power system experiences disturbances if no protection is
implemented. Moreover, only the proposed SeCDM scheme
is able to successfully identify such a DD-CFDI attack.

B. Computational Complexity

We conducted 1, 000 times of the entire scheme over the
standard IEEE 14-, 24-, and 39-bus test systems, respectively,

for each case wherein the settings of the total number of PMUs
l, total number of PDCs δ, and dimension of measurement data
d vary. The numerical results of the communication overheads
are summarized in Table III and the computational costs are
respectively plotted in Figs. 10, 11, and 12.

As per the proposed SeCDM scheme, each PMU requires d
exponentiation operations in Z∗n2 and a line of multiplication
operations in Z∗n2 , etc., to encrypt d pieces of the measurement
data. We observe that, the computational cost of each PMU
grows almost linearly proportionally to the dimension of the
measurement data d. In Fig. 10, the computational costs of
each PMU on average to generate the report of encrypted mea-
surement data versus d, under IEEE 14-bus, 24-bus, 39-bus test
systems for both PAMA and SeCDM schemes are respectively
plotted. It can be seen in this figure that, given a same d, the
average computational cost for each PMU is almost the same
for different test systems. Compared to PAMA, the proposed
SeCDM scheme requires less computational capability.

The PDC needs to conduct ν × l × d2 exponentiation
operations and a series of multiplication operations in Z∗n2

on average, where ν denotes the average number of PMUs
deployed in a given region. Figure 11 shows the computational
cost of each PDC versus l under different ds for various test
power systems, respectively. As observed in this figure, the
computational cost for each PDC increases nearly linearly
proportionally to l and also increases almost quadratically to
d. Additionally, we observe that PAMA and SeCDM require
a similar level of computational capability for PDCs, in that
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versus d for both PAMA and SeCDM schemes
under various test power systems (δ = 5).
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detection module versus l for both PAMA and
SeCDM schemes under the IEEE 14-bus test
power system (δ = 5).

TABLE III
SUMMARY OF COMMUNICATION OVERHEADS

Scheme PMU to PDC PDC to Module

PAMA [9] d× 2|n| bits lk × d× 4|n| bits

The proposed SeCDM d×(2|n|+256) bits lk×d×(4|n|+256) bits

similar operations are demanded for both schemes. For the FDI
detection module, it needs to perform l2 × d2 + l × d expo-
nentiation operations and a series of multiplication operations.
Figure 12 plots the computational cost of the FDI detection
module versus l and d for both PAMA and SeCDM schemes.
This figure shows that the proposed SeCDM incurs relatively
heavier (but acceptable) computational costs than the original
PAMA for the FDI detection module. The reason is that in
the proposed SeCDM scheme the module shares almost half
of the entire data preprocessing tasks (same as PDCs), which
is the key for SeCDM to achieve CFDI attack resilience.

C. Communication Overheads

In our scheme, we mainly consider two communication
links, the PMU-to-PDC link and the PDC-to-Module link.
In relation to the PMU-to-PDC communication link, where
PMUs convey the collected measurements to the regional
PDC, each report comprises d encrypted data in Z∗n2 as well as
d pieces of MAC values. Hence, the communication overhead
from each PMU-to-PDC link is d×(2|n|+256) bits. As for the
PDC-to-Module communication link, where PDCs deliver the
preprocessed measurement data to the FDI detection module,
each report comprises lk × d preprocessed data in Z∗n2 , lk × d
encrypted data in Z∗n2 , and lk × d pieces of MAC values.
In this way, the communication overhead for each PDC-to-
Module link is lk×d× (4|n|+ 256) bits. The communication
overheads of the existing PAMA scheme and the proposed
SeCDM scheme are summarized in Table III. We remark that
in the PAMA scheme, data integrity verification is not well
considered, while the MAC (requiring an extra 256 bits for
each piece of measurement data) is employed in the proposed
SeCDM scheme to achieve this goal.

VII. CONCLUSIONS

In this paper, we demonstrated how several existing ho-
momorphic encryption based FDI mitigation schemes are
vulnerable to CFDI attacks on smart grids, and introduced our
proposed resilience-enhanced SeCDM scheme. The scheme is
designed to detect and mitigate both conventional FDI and two
types of CFDI attacks (i.e., DM-CFDI and DD-CFDI) on smart
grids. A decentralized homomorphic computation paradigm
along with a hierarchical knowledge sharing algorithm for
securely executing the FDI detection was also designed to
help achieve our aims. Both security analysis and performance
evaluations demonstrated the enhanced resilience of SeCDM
in defending against FDI, DM-CFDI, and DD-CFDI attacks.
This is the first work, to the best of our knowledge, that focuses
on CFDI attacks in smart grids. In addition, experiments on
the standard IEEE 14-, 24-, and 39-bus test power systems
show that the communication overheads and computational
complexity are reasonably low.

Future research directions include 1) extending our pro-
posed scheme to detecting and mitigating CFDI attacks on AC
model based state estimation and 2) enhancing the scheme by
differentiating the normal bad data and hacked bad data.
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